Dynamic copula models and high frequency data

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamic copula models for multivariate high-frequency data in finance

The stylized facts of univariate high-frequency data in finance are well known; see Dacorogna et al. (2001). In Breymann et al. (2003) we analyzed bivariate high frequency forex data as a function of the sampling frequency, however treating the data as iid. In the present paper, using the data from Breymann et al. (2003), we model the dynamics as GARCH type processes and investigate the stylize...

متن کامل

High dimensional dynamic stochastic copula models

We build a class of copula models that captures time-varying dependence across large panels of financial assets. Our models nest Gaussian, Student’s t, grouped Student’s t, and generalized hyperbolic copulas with time-varying correlations matrices, as special cases. We introduce time-variation into the densities by writing them as factor models with stochastic loadings. The proposed copula mode...

متن کامل

Appendix of High Dimensional Dynamic Stochastic Copula Models ∗

This is an on-line appendix showing some of the details of implementation. The notation used is defined in the paper.

متن کامل

Dynamic Frailty and Change Point Models for Recurrent Events Data

Abstract. We present a Bayesian analysis for recurrent events data using a nonhomogeneous mixed Poisson point process with a dynamic subject-specific frailty function and a dynamic baseline intensity func- tion. The dynamic subject-specific frailty employs a dynamic piecewise constant function with a known pre-specified grid and the baseline in- tensity uses an unknown grid for the piecewise ...

متن کامل

High Dimensional Semiparametric Gaussian Copula Graphical Models

In this paper, we propose a semiparametric approach, named nonparanormal skeptic, for efficiently and robustly estimating high dimensional undirected graphical models. To achieve modeling flexibility, we consider Gaussian Copula graphical models (or the nonparanormal) as proposed by Liu et al. (2009). To achieve estimation robustness, we exploit nonparametric rank-based correlation coefficient ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Empirical Finance

سال: 2015

ISSN: 0927-5398

DOI: 10.1016/j.jempfin.2014.11.008